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J. Phys. A: Math. Gen. 14 (1981) L273-L276. Printed in Great Britain 

LETTER TO THE EDITOR 

Non-bijective canonical transformations in quantum 
mechanics 

J Deenen 
Physique Thkorique et Mathkmatique, CP 229, Universitk Libre de Bruxelles, Belgium 

Received 10 April 1981 

Abstract. We propose a new formulation for the representation of non-bijective canonical 
transformations in quantum mechanics. These are represented by a unitary operator acting 
on a Hilbert space %!a%! similar to the one used for the description of a two-dimensional 
system. 

The representation of canonical transformations in quantum mechanics has been 
extensively discussed by Moshinsky and his collaborators (Mello and Moshinsky 1975, 
Kramer et a1 1978, Moshinsky and Seligman 1978, 1979a, b, Garcia-Calderon and 
Moshinsky 1980, Deenen et a1 1980). One of the most interesting applications of this 
theory is to solve complicated problems. Suppose, indeed, we have a canonical 
transformation that maps one Hamiltonian onto a much simpler one; then all known 
properties of the simple problem can be translated to the other. If the spectra of both 
Hamiltonians are the same, the canonical transformation is bijective. When the spectra 
are different, the transformation, if it exists, becomes non-bijective. Recently such a 
transformation has been discussed (Moshinsky and Seligman 1980) in connection with 
collective states in nuclei. 

To find the quantum representation of non-bijective canonical transformations, we 
are faced with two kinds of difficulties. The first one is related to the quantisation 
process. In order to find the quantum operator associated with a given classical function 
in phase space we shall use Weyl's quantisation process. 

In this Letter we want to discuss a second type of difficulty arising from the 
non-bijectiveness of the canonical transformation. In general, the classical canonical 
transformation 

4 = f ( q ,  P )  B = g(q9 P )  with (4, p }  = 1 ( l a )  
is written in quantum mechanics as 

d = F(Q, P )  P = G(Q,  P) .  
If F(Q,  P )  and G(Q,  P )  have the same spectrum as Q and P and [F, GI = i, it is possible 
to find a unitary operator U such that 

a = UQU' and P = UPU'. 

This is the case for the linear canonical transformation (Moshinsky and Quesne 1971) 
and for some nonlinear transformations (Mello and Moshinsky 1975). In our case the 
operator U does not exist because Q and 0 ( P  and P )  have not the same spectrum. One 
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attempt to overcome this difficulty has been given by Plebansky and Seligman (1978). 
They propose to embed the Hilbert space % in a larger one and replace the unitarity by 
the concept of partial isometry. Unfortunately this embedding of the space depends 
strongly on the canonical transformation: for each non-bijective canonical trans- 
formation there is in general one specific embedding of the space %. This means that it 
is impossible to combine canonical transformations. For example, the canonical 
transformation defined by the implicit equations 

;( p2 + q2)  = p 2  + q 2  2 tan-l(p/q) = tan-'(p/q) ( 2 )  
*is represented by a set of partial isometries between % and %@V2 where V2 is a 
two-dimensional space related to the ambiguity spin (Moshinsky and Seligman 1978). 

We want to show here that it is possible to associate with the canonical trans- 
formation (2 )  a unitary operator acting on %@%, the second space taking the place of 
the V2 space considered by Plebansky and Seligman. In other words, we intend to 
prove that we can make the canonical transformation bijective by considering it as a 
two-dimensional transformation. 

We first introduce the usual creation and annihilation operators of the harmonic 
oscillator (HO) 

U +  = (l/&)(Q -iP) U = (I/JZ)(Q +iP)  

and the number operator N = u+u. With these operators, the first equation of (2) can be 
written as 

N = 2 N  (3) 
and we see clearly that a unitary operator that maps N onto 2N does not exist. 
Nevertheless there exists a family of partial isometries (PI) that map N onto the set of 
two operators 2N + aI (a = 0 ,  1). These are 

Tu =I ln)(2n +a1 
n 

(4) 

where In) denotes the eigenvector of N associated with the eigenvalue n. The set of 
operators (4) is a complete set of partial isometries. We have indeed 

T,T:' = 8 u u 3 ~  

T:T, = B, is a projector 

If we look at the action of these PI on the number operator N, we see that they map N 
onto the set (2N, 2N + I ) :  

TuNT: =E ln)(2n +alN12n'+a)(nf1 

=2N+aI.  

In particular, To maps N onto 2N but it is not unitary as can be seen from ( 5 ) .  
In the following we shall put a tilde on an operator if it acts on the second %-space of 

%e0 X; otherwise it will act on the first space which is the physical one. The second %is 
an auxiliary space, playing the same role as V2 in the Plebansky-Seligman formulation. 
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From the PI defined above we can construct a unitary operator in Re0 2: 

U = 1 TUF:. 
U 

To prove the unitarity of this operator, we use the relations (5) and the fact that the T, 
and fu commute as they act on different spaces: 

and 

u+u = U 

where 0 denotes the unit operator in R@2. 
Let us show how the number operator N is transformed by U. We have 

=2N+s” 

where we omit the unit operators I and f and define s ’ = Z ~ @ , = @ 1 .  Thus N is 
mapped onto 2 N  by U if we add an operator s” with eigenvalues 0 and 1, which acts on 
an auxiliary space. 

The result is formally the same as that obtained by Kramer et al, but as they use a 
two-dimensional auxiliary space, s” is represented by a 2 x 2 matrix (E 7). In our case s’ 
can be represented by an infinite block diagonal matrix built with this 2 x 2 matrix. In 
both formulations, the role of s” is very important because it ensures that N and 2 N  + s’ 
have the same spectrum. This is a necessary condition for the existence of a unitary 
operator. 

We can go further in the analogy between these two formulations. Let us look for 
example at the transformation of creation and annihilation operators a+ and a. 

Using the definition (6) of U and the properties of the partial isometries ( 5 ) ,  we 
obtain 

UaU’= JZaJ++ ( 2 N +  1 ) l ’ Y  U a + u + = J Z a + J ~ + ( 2 N + 1 ) ” 2 J +  (7) 

where we introduce a spin operator j in the auxiliary space: -- - N  J , = 3 1  (12n+1)(2n+11-12n)(2nl) 

.?+ = 1 12n + 1)  (2n  I 7-i N N -  

J - = C 1 2 n ) ( 2 n + l I .  

The expressions (7) are similar, in our formulation, to the formulae (5.8) and (5 .9)  of 
Kramer et a1 (1978).  

Finally, let us sketch what happens for a more complicated canonical trans- 
formation, namely 

I41 = 3 ( p 2 + q 2 )  ( I d / 4 ) ~  = tan-’(p/q). 

In this case, the quantum picture leads us to consider a mapping between the position 
operator Q and the HO operator N. If we denote by / q )  the eigenstates of Q and by In) 
the eigenstates of N, it is easy to show that the set 

T ~ A  In)(s(n + A ) [  where s = *l, A E [0, 1 )  
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form a complete set of partial isometries in the sense of ( 5 ) .  Moreover, the PI TsA maps 
Q onto s (N+A):  

T,,QT,f, = s (N + A )  

and the unitary operator U = Z, j  dAT,,?;, represents the canonical transformation. 
The final result 

UIQ/U' = N + A, 
where = Z j dh A?:A?sA, is in agreement with what has been done before for this 
special canonical transformation (Moshinsky and Seligman 1978). This formulation 
can be generalised to any non-bijective canonical transformation provided we have a 
family of partial isometries. The auxiliary space introduced here is in general too large 
(a two-dimensional space V2 is sufficient for the first example), but has the advantage 
that the representation space is the same, namely X@X for all the canonical trans- 
formations. This allows us to combine them and thus opens the way to a quantum 
representation of the general symplectic group. 

The author is indebted to M Moshinsky and C Quesne for stimulating discussions. 
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